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Abstract

book embedding of a/raph consists of a linear ordering of the vertices along the spine of
a book and an assignn~nt of ed, - to pages so that edges on the same page do not
intersect. The minindm nun f pages in which a graph car. be embedded is its
pagenumber. The p~genumber of a class of graphs is the minimum number of pages in
which all the members of the class can be embedded, as a function of graph size. in this-
thesis, we prove the following results, all of which substantially improve previously known
bounds. v,.. , -. .1.'- ,-I. I

(1) The class of E-edge graphs has pagenumber O(,/4). This result is tight since the
complete graph on n vertices has 9(n 2) edges and pagenumber G(n). A Las Vegas
algorithm to embed any E-edge graph in O(FE) pages is also given.

(2) The class of genus g graphs has pagenumber O(/'). This verifies a conjecture do to
1Heath and Istrail. The result is tight since the complete graph on n vertices has genus
J, e(n2) and pagenumber 9(n). We give a Las Vegas algorithm to produce an O(,/g)-

page embedding when both the graph and its surface embedding are provided as input.

(3) The n x n Mesh of Cliques has pagenumber 0(n 3/2). The n x n Mesh of Cliques is the
graph whose vertex set is {1,2,..., n} x {1,2,..., n} and whose edges connect each row

55 1 {i} x 11,2,..., n} into an n-vertex clique and each column {1,2,..., n} x {i} into an
Q ,n-vertex clique. The Mesh of Cliques was mentioned by Chung, Leighton, and

Rosenberg as a particularly nice example of a regular graph with unknown
pagenumber.

(4) Most n-vertex d-regular graphs have pagenumber n(,'dnh/2 -/d). This bound is tight
when d > log n. The crux of the argument is a lemma that shows most d-regular
graphs are "nearly" complete when suitably large clusters of vertices are identified.
We suspect this lemma may have application to a variety of other graph embedding
problems. For instance, we use it to derive an area lower bound for a multilayer VLSI
grid model introduced by Aggarwal, Klawe, and Shor.
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Abstract:

A book embedding of a graph consists of a linear ordering of the vertices along the

spine of a book and an assignment of edges to pages so that edges on the same page

do not intersect. The minimum number of pages in which a graph can be embedded

is its pagenumber. The pagenumber of a class of graphs is the minimum number

of pages in which all the members of the class can be embedded, as a function of

graph size. In this thesis, we prove the following results, all of which s'ihstantially

improve previously known bounds.

(1) The class of E-edge graphs has pagenumber O(xE). This result is tight since

the complete graph on n vertices has O(n 2 ) edges and pagenumber O(n). A

Las Vegas algorithm to embed any E-edge graph in O(vx/?) pages is also given.

(2) The class of genus g graphs has pagenumber O(V,). This verifies a conjecture

do to Heath and Istrail iHIJ. The result is tight since the complete graph

on n vertices has genus O(n 2) and pagenumber 0(n). We give a Las Vegas

algorithm to produce an O(V/ )-page embedding when both the graph and its

surface embedding are provided as input.
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(3) The n x n Mesh of Cliques has pagenumber 0(n'/ 2). The n x n Mesh

of Cliques is the graph whose vertex set is {1,2,... ,n} x {1,2 .. ,n} and

whose edges connect each row {i} x {1.2,... n} into an n-vertex clique and

each column {1,2 . , n} x {i} into an n-vertex clique. The Mesh of Cliques

was mentioned by Chung, Leighton, and Rosenberg [CLRI as a particularly

nice example of a regular graph with unknown pagenumber.

(4) Most n-vertex d-regular graphs have pagenumber 2(v/-dn1/ 2-1/,1). This bound

is tight when d > log n. The crux of the argument is a lemma that shows most

d-regular graphs are "nearly" complete when suitably large clusters of vertices

are identified. We suspect this lemma may have application to a variety of

other graph embedding problems. For instance, we use it to derive an area

lower bound for a multilayer VLSI grid model introduced by Aggarwal. Klawe.

and Shor [AgKS].
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Title: Associate Professor of Applied Mathematics
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Chapter 1

Introduction

In this thesis, we prove several results about embedding graphs in books. The

present chapter defines the book embedding problem. and indicates how it ari-e

in VLSI design and parallel sorting. It also reviews what was known about book

embddings before our work. and outlines the results we have obtained.

1.1 Definitions and Statement of the Problem

Since we will be talking about embedding graphs in books. it is our first order of

priority to define what we mean by a "graph-. a "book". and embeddings of the

former in the latter. A simple. undirected graph G = (V. ') is a finite set V of

vertices, and a set E of edges which are two-element subsets of '. Thus a graph

has no loops or multiple edges. A book is a two-part object consisting of a spine,

which is a line. and some number of pages, each of which is a half-plane having

the spine as boundary. A book embedding of a graph linearly orders the vertices

along the spine of a book and assigns each edge to a page, so that edges assigned to

the same page can be drawn on the page without crossings. Two book embeddings

for the graph in Figure 1.1(a) are shown in Figures 1.1(b) and 1.1(c). Figure 1.1(b)

is a 3-page embedding (thin edges go on one page. bold edges on another, and
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patterned edges on the third), and Figure 1.1(c) is a 2-page embedding.

Clearly, a fixed graph G has many possible book embeddings. Define the pa-

genumber of an embedding to be the number of pages used in the book. Define

the pagenumber of G to be the minimum pagenumber of any embedding of G.

Define the pagenumber of a class of graphs to be the minimum number of pages in

which every member of the class can be embedded, as a function of graph size. The
book embedding problem is to find book embeddings with "small" pagenumber

for all the members in a given graph family.

1.2 Circle Embeddings

There is an equivalent formulation of book embedding that is more convenient to use

in certain situations. and this is called a circle embe;tding. A circle embedding

of a graph C places the vertices at distinct locations on a circle (so that edges

become chords), and assigns each chord to a layer so that chords in the same layer

do not cross.

Not much effort is required to see that a book embedding with k pages is equiv-

alent to a circle embedding with k layers. To obtain a circle embedding from a

book embedding. simply take the spine of the book and "pull up" on the ends to

form a circle. Two edges on the same page of the book embedding now become

noncrossing chords of the circle, and thus can be placed on the same layer.

To obtain a book embedding from a circle embedding, cut the circle between

two neighboring vertices (on the circle) and "pull down" on the ends to form the

spine of a book. Two chords in the same layer of the circle embedding can now be

placed on the same page of the bok.

The equivalence of these two notions gives us the following simple facts: (1)

G has a one-page book embedding iff it is outerplanar; (2) G has two-page book

embedding iff it is a subgraph of planar graph that has a Hamiltonian cycle.

10
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Figure 1.1: Tw~o hook ernbeddings for the graph in (a) are shown in (b) and (c)



1.3 Motivations

Book embeddings have application to several areas of theoretical computer science

including VLSI design, automata theory, and complexity theory. We jiow briefly

describe four of these applications. For more details see Heath lHell.

1.3.1 Multilayer Network Embedding

For the most part, VLSI layout theory has been a 2-dimensional theory of network

embedding in 2-layer grids (see Leiserson [Lsl.) Although two layers suffice. there

are advantages to considering multilayer (more than two layer) grid embeddings.

which takes the circuit layout problem into the realm of 3-dimensions. Leighton

and Rosenberg ([LR1]LR21[Ro1i[Ro2j) have studied "-dimensional layout models

and their results show that the volum, and wire length of a good 3-dimensional

layout are typically less than the area and wire length of the best 2-dimensional

layout for the same circuit. On the practical side. multilayer printed circuit boards

have been in existence for many years (So ]Soi. Ting and Kuh 'TKl). and recent

technological advances are now making multilayer VLSI a reality.

The book embedding problem models a restricted version of 3-dimensional iav-

out. where processors (that penetrate all the layers) are arranged in a concept, ial

line, and wires of the embedded network are prohibited from crossing this line.

or changing layers. These restrictions arise naturally in multilayer channel rout-

ing and in the layout of multilayer printed circuit boards. Regarding the latter

problem, for example, So [Soj suggests a strategy called Single-Row Routing.

Here the components of the network are arranged in a square array on a grid with

evenly spaced channels seperating the rows and columns. By adding dummy corn-

ponents if necessary, one can arrange for all the wires of the network to connect

only components in the same row or column. The wires belonging to each row and

column are then embedded independantly in the space provided by the associated

12



channels. A 2-dimensional layout problem has thus been reduced to a collection

of 1-dimensional layout problems, each each of which is solved independently. The

restriction where wires are not allowed to pass between components in their row or

column, corresponds precisely to the book embedding problem.

1.3.2 Design of Fault-Tolerant Processor Arrays

In the manufacturing process of computer chips. faulty processors are occasionally

created, and these can render a chip unusable. One way of dealing with this problem

is to engineer "customizable" chips, that can be wired later to form the desired

network only among live processors. How might one design such a chip?

Rosenberg (Ro3! suggests a method called Diogenes. In this approach, the de-

sired network is book-er-bedded i t '7-'ayer chip. and only live processors are

implemented. The spine is a collection of identical processors arranged on the chip

in a conceptual (if not actual) line. and there are enough of them to allow for ex-

pected failure. A page corresponds to a "bundle- of noncrossing wires that resides

in the first layer and runs parallel to the spine. Different pages correspond to buli-

dles located at different distances from the spine. Wires that run perpendicular

to the spine connect the bundles to working processors. In the wiring process, we

sweep across the spine from "left" to "right". incorporating the live processors into

our desired network. This is being done for each bundle simultaneously. A simple

switching mechanism built into the chip enables each wire-bundle to function as

a hardware "stack" which is POPped when we interconnect a live processor that

terminates a wire on the stack, and PUSHed when we interconnect a live processor

that originates a wire on the stack. More precisely, when a functioning processor is

encountered. a control signal is emitted by the processor perpendicularly through

the bundle, indicating to all the wires, which stack operation is to be performed at

that processor. If the stack is POPped, all the wires in the bundle shift one track

closer to the spine and the inside wire interconnects the processor. If the stack is

0 13



PUSHed, all the wires shift one track further from the spine, thereby making room

for a new wire interconnecting the processor. If a processor is faulty, no control

signal is emitted, and the wires proceed on their present course until they arrive at

the next processor. The beauty in this whole approach is that all wires in the same

layer are treated identically each time a new processor is encountered. This makes

for a very easy-to-implement wiring procedure.

Notice that book embeddings which use few pages correspond to reduced hard-

ware (few layers). Since the Diogenes methodology takes as input an arbitrary

interconnection graph, it is desirable to have good bounds on pagenumber for large

classes of graphs.

1.3.3 Sorting with Parallel Stacks

Even and ltai tEll. Rosenstiehl and Tarjan IRTI. and Tarjan 1Tai. all studied the

problem of realizing permutations with a collection of noncommunicating stacks.

Let 7r be a permutation of the numbers 1 ...... N. Initially. each number in the or-

der I..N. , is PUSHed onto any one of k stacks, and then the stacks are POPped.

yielding the sequence 7r(1) .. . .. r(N). Of course. this is only possible if 7r(i) is ori

top of its stack after 7r(1) ..... ,r(i - 1) are POPped. Suppose we want to know

how many stacks are needed to realize 7r. Construct the graph G on vertices
{a,,... aN,bj,... ,bN} whose edges are {(a,.b,,.(,))ll < i < N}. The minimum num-

ber of stacks required to realize 7r is precisely the pagenumber of G, with respect to

the vertex order a,,... ,aN,bj,... ,bN. This is because a page of G, corresponds to

numbers that are oppositely ordered by 7r. This means they can be PUSHed onto

the same stack, since they will appear in the right order when the stack is POPped.

1.3.4 Turing Machine Graphs

Given a Turing machine Af. one can construct a T-vertex graph that models T

steps of Al's computtion. Each vertex of the graph corresponds to a step of .he

14 0



computation, and two vertices t, and t2 are adjacent iff one of M's tape heads visits

the same square at times t, and t2, but at no time in between. It is not difficult

to show that a k-tape Turing machine graph can be embedded in a 2k-page book.

Some interesting results in complexity theory might be obtained by charecterizing

graphs that can be embedded in books with a given number of pages. For example.

a proof that 3-page graphs have small bisectior width would yield a number of

interesting complexity-theoretic results. (See [GKSJ, (Kal, [PPSTI).

1.4 Previous Work

The first important work on book embeddings is due to Bernhart and Kainen

!BKJ. They characterize one- and two-page embeddable graphs and demonstrate

the equivalence of book embeddings and circle embeddings. They show that K,.

the complete graph on n vertices, has pagenumber Fn:21. They establish the fol-

lowing relationship between the chromatic number of a graph and its pagenumber:

x (G) :9 2. page(G) -,- 2.

They also construct graphs with pagenumber 3 and arbitrarily large genus (see

Subsection 3.2.1 for the definition of graph genus.) In the other direction. they

conjectured that graphs of fixed genus could require an unbounded number of pages.

For genus 0 graphs (i.e. planar graphs), this conjecture was disproved by Buss

and Shor [BS] who showed how to embed any planar graph in 9 pages. Using other

techniques, Heath IHel] improved that to 7 pages and developed book embedding

algorithms for special classes of planar graphs IHe2I. Later, Istrail 11s) showed that

planar graphs require no more than 6 pages. Finally. extending the techniques of

Heath [He2l, Yannakakis JYa proved that 4 pages are necessary and sufficient, for

the class of planar graphs. An important aspect of this 4-page embedding, is that

for a biconnected planar graph, it preserves the cyclic order of the boundary vertices

(i.e. the vertices bounding the exterior face.)

0. ...... . . . 15no a m a il i i



The general conjecture for arbitrary fixed genus was disproved by Heath and

Istrail JHIJ who provide an algorithm to embed any genus g graph in 0(g) pages.

(Their algorithm is linear-time if the surface embedding is given as part of the

input.) They also demonstrate that fl(\V) pages are necessary for the class of

genus g graphs. This led them to conjecture that 0(,,/g) pages would suffice for the

class.

Another important work on book embeddings pursues some different directions.

Chung, Leighton, and Rosenberg (CLRI give optimal book embeddings for a variety

of popular networks. present a polynomial-time algorithm to embed trivalent graphs

in o(vi) pages. and relate pagenumber to the size of a graph's minimum bifurcator

(see 1BL1). In addition. they demonstrate that the class of d-regular graphs on n

nodes has pagenumber O(dN.n) and Ql(n1!zi- 1i" , log' n).

From a computational point of view. determining the pagenumber of an arbi-

trary graph appears difficult. Garey. Johnson. Miller and Papadimitriou 1G.I.N1i

have shown that even if an ordering of the vertices is specified beforehand. deter-

mining the optimal number of pages for general graphs is NP-complete. Equally

interesting, W\igderson [Wi] has shown that to decide whether or not a planar graph

has pagenumber 2 is NP-complete.

1.5 Our Results

Chapter 2 extends the ideas in tCLR] to show that the class of E-edge graphs has

pagenumber 0(,V-). This result is tight since the complete graph on n vertices has

E(n 2) edges and pagenumber 0(n). A Las Vegas algorithm to embed an E-edge

graph.in O(\/E) pages is also given.

Chapter 3 goes even further, extending the result above and the result of JH11.

Here we show that the class of genus g graphs has pagenumber O(\/ ), thus verify-

ing the Heath-Istrail Conjecture. This bound is tight since the complete graph ol

16



n vertices has genus 1(n 2 ) and pagenumber 0(n). We give a Las Vegas algorithm

to embed a genus g graph in 0 (,/v) pages when both the graph and its surface

embedding are provided as input. Since the Heath-Istrail algorithm EHII is a funda-

mental building block for our embedding strategy, we review the necessary results

from their paper in Section 3.2. To make the thesis more self-contained, all proofs

of their results have been included.

The nx n Mesh of Cliques, A4(n), is the graph whose vertex set is {1,2,... , }

{ 1, 2,... ,n} and whose edges connect each row {i} x {1,2 .. ,n} into an n-vertex

clique and each column {1,2.....n} {i} into an n-vertex clique. The Mesh of

Cliques was mentioned by Chung, Leighton. and Rosenberg (CLRJ as a particularly

nice example of a regular graph with unknown pagenumber. They show (noncon-

structively) that 3t(n) has pagenumber O(n"). and that any book embedding which

places M(n)'s vertices along the spine row-by-row must use n4 I pages. In Chap-

ter 4. we give a constructive 0(n 3'2 )-page embedding for .1(n) that maintains a

row-by-row ordering of the vertices along the spine.

In Chapter 5. we prove that most n-vertex d-regular graphs have pagenumber

fQ(xvdn-1; 2 -). This strengthens the result of [CLRj. and is tight for d - logn. The

crux of the argument is a lemma that shows most d-regular graphs are "nearly"

complete when suitably large clusters of vertices are identified. We suspect this

lemma may have application to a variety of other graph embedding problems. In

Section 5.3, for instance, it is used to derive an area lower bound for a multilayer

VLSI grid model introduced by Aggarwal, Klawe, and Shor jAgKS].

Chapter 6 summarizes our results and closes with a list of open problems.

|| 17



Chapter 2

Embedding E-edge Graphs in

O(VEi) Pages

2.1 Introduction

In Section 2.2. we extend the ideas of CLRI to show that the class of E-edge graphs

has pagenumber 0(,, T). In Section 2.3. we give an approximation algorithm for

the NP-complete problem of optimally b-ok embedding a graph with respect to a

specified ordering of the vertices. Finally in Section 2.4. we supply a Las Vegas

algorithm to embed any graph with E edges in O(\"E) pages.

2.2 Graphs with E Edges have Pagenumber O(v E)

The following is a precise statement of the theorem we wish to establish.

Theorem 2.2.1 Let G be a graph with E edges on n nodes, where E -> n. Given a

random linear ordering 7r of the vertices, the probability that G can be embedded

in 11 v'E page- with respect to the ordering 7r. is at least 1 - (1/2)

In order to prove this, we need a few definitions and preliminary lemmas.

! ! l ! l p 1



A 2-colored bipartite graph (2BG) is a bipartite graph with an associated

2-coloring of the vertices, say with the colors LEFT and RIGHT, so that no edge

connects two vertices of the same color. Given a bipartite graph G with k connected

components, there are precisely 2k ways of 2-coloring the vertices with the colors

LEFT and RIGHT.

A 2BG is canonically ordered if its vertices are linearly ordered so that all

LEFT vertices precede all RIGHT vertices.

Given a (horizontal) linear ordering of the vertices in an arbitrary 2BG, and

an edge e in the 2BG. denote the left and right endpoints of e by 1(e) and r(e)

respectively.

A 2-colored matching is completely crossing with respect to the canonical

ordering 7r. if its edges can be labeled el.el ..... ek so that

1(e,) <, 1(e2) <,... <, 1(ek) and r(el) < , r(e2 ) <,..<,r(ek).

Intuitively, a 2-colored matching is completely crossing with respect to r. if no edge

can be placed on the same page as another edge.

The following lemma generalizes a result of Tarjan ITal (Theorem 1.2 in ICLRI)

and the proof is essentially identical.

Lemma 2.2.1. Let 7r canonically order the 2BG G. If at most k edges are com-

pletely crossing with respect to 7r, then G can be embedded in at most k pages with

respect to 7r.

Proof. Partially order the edges of G as follows. Say

el _- e2 iff I 1(e2 ) <, 1(e,) and r(e,) <, r(e2 ) 1.

Intuitively el e2 iff el is "nested" in e2 with respect to r. A chain in this partial

order corresponds to a set of edges that can be placed on the same page. and an

antichain corresponds to a set of completely crossing edges. Dilworth's Theorem
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(see IDiJ) says that the minimal number of chains into which a partial order can be

decomposed is equal to the size of the largest antichain. U

Lemma 2.2.2. [CLR] For n even. K,, has pagenumber n/2.

Proof. The lower bound on pagenumber is argued as follows. Arbitrarily lay the

vertices of K, out on a line; call the vertices 1 .... n in left-to-right order. Consider

the set of edges {(1, 1 + n/2), (2.2 4- n/2)..... (n/2. n)}, and observe that no pair

of edges from this collection can be placed on the same page without intersecting.

Hence this embedding requires n /2 pages.

To see the upper bound, consider the following way to lay out K,,. Place the

vertices 1 ... n evenly spaced on a circle and look at the path P,, shown below:

P, -- I - n - 2 - (ni- 1) - 3- (- 2) -..... n; 2- tn- n 2) - 1,.

If we take the union of P, and (n 2) - 1 consecutive clockwise rotates of P_. we

obtain K,. In fact. one can verify that each edge of K, appears in exactly one of

the n/2 rotates of P,,. Since each rotate of P, is outerplanar. we can place it on its

own page. thereby obtaining an n/ 2-page embedding for K,,. M

We are now ready to establish Theorem 2.2.1. The proof combines the develop-

ment above with ideas from Theorem 4.7 of CLRI.

Proof of Theorem 2.2.1. Pick a random linear ordering 7r of G's vertices, and

partition the edges of G into log n "levels" (all logs are base 2). To obtain the j-level

edges (1 < J < log n), first divide 7r into 2' segments each with the same number

of vertices. Label the segments from left to right L.R.L.R.L, etc. Any edge that

connects vertices in an adjacent L.R pair of segments is a j-level edge. Notice that

every edge of G is in a unique level.

Let A' be the event that there exists a matching Al in G with k edges, and a

2-coloring X of M, such that the resulting 2BG is canonically ordered, j-level. and
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completely crossing with respect to 7r. We have

PrA'l < 2- ~(E 2 k( )2k1

2 4

where

(1) is the number of adjacent L.R segment pairs at the jth level;

(2) upper bounds the number of matchings Al in G with k edges (including a

designated 2-coloring);

(3) upper bounds the probability that ,r canonically orders the vertices of Al )Y

putting all LEFT nodes in a fixed segment labeled L and all RIGHT nodes in

the adjacent segment labeled R:

(4) upper bounds the probability that Al is completely crossing with respect to

,r. given that -, canonically orders M.

O Simplifying.

Pr',4k <
P i k! X2 k ! (k )2')k

If we let k, e\ 2E 2. then

Pr!AA' (1 <2 (1 /"2) n

where the last inequality follows from the assumption E > n. The next step is to

show that simultaneously we expect no more than eV2E/V1' completely crossing

1-level edges. no more than ev/2E/' 2 completely crossing 2-level edges. no more

than ev2E/\ "2' completely crossing 3-level edges. and so on in a nice geometrically

decreasing fashion. We have

P r ' V ', Alog (nvE)

Pr[A, v A4' v4.. Alo\,,n

_ PrtAi A, , .... v 4,.....2

... .+ .-- - n u IInn I II III IImmnln21



< ( 1 / 2 )f/V' + (1, 2)e/ n/v''2 1 / 2) e

< (1 /2) .

Hence
Pr-A, A -A', A ... , A'og(n/vE)J > 1 - (1/2) x~

" k , (,,/, E

Therefore, with probability at least 1 - (1,'2) '", a random linear ordering of the

vertices allows the j-level edges to be embedded in ev'2E/v2' pages (by Lemma

2.2.1) for all. in the range 1 through log (ni, vE). (We did not go all the way to level

log n because as j approaches log n. the quantity PrI4 1 approaches a constant.

and this would not allow us to obtain a high probability result.)

Observe now that segments at level log (n \ E) contain only \ Evertices. Hence

the remaining edges. those in levels i E, ( alac oeyond. can be embedded

in \,E pages by Lemma 2.2.2. Thus. for 'good" linear orderings, the total number

of pages used to embed all the edges of G is at most

e\ 2E \ 2- -e\ 2E , \ 2" - . e\ 2E \ 21 " \ E 11\--.--- - -.. -l-'t -El - ll -.

2.3 An Approximation Algorithm for an NP-

Complete Problem

In Section 1.4, we mentioned the following result of Gary et. al. [GJMPI: that it is

NP-complete to optimally book embed a general graph with respect to a specified

ordering of its vertices. In this section, we describe a simple log-factor approxima-

tion algorithm due to Tom Leighton ILt3l. Given an input graph G on 7 nodes

and a linear ordering L of its vertices, the algorithm embeds the edges of G in log ,1

times optimal pages with respect to L. in deterministic polynomial time. The idea

is to first decompse G into log n bipartite graphs. and then embed each bipartite

graph in the optimal number of pages using an effective version of Lemma 2.2.1 .(it
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is well known that Dilworth's original proof of Dilworth's Theorem (see Dii) can

easily be adapted to a polynomial-time algorithm which takes a partial order and

decomposes it into the minimum number of chains.)

The approximation algorithm works as follows. Partition the edges of G into

levels with respect to L, as done in the proof of Theorem 2.2.1. Using the determin-

istic polynomial-time version of Lemma 2.2.1. embed all j-level edges in the optimal

number of pages. say OPT,. By employing a different set of pages for each level, the

total number of pages utilized by the algorithm is OPT, - OPT2 -... - OPT ,. If

OPT is the smallest number of pages in which all of G can be embedded, then clearly

max, OPT OPT. and hence. the algorithm uses no more than OPT log??

pages.

2.4 A Las Vegas Algorithm that Embeds an E-

Edge Graph in O(,,E) Pages

The Las Vegas algorithm simply applies the above routine to a random linear or-

dering of the vertices of the input graph. If more than O(\ E) pages total arc

employed, the algorithm picks another random ordering and applies the routine

again. It continues picking random orderings until the routine finally yields a book

embedding with O(\ E) pages. By the proof of Theorem 2.2.1. this algorithm runs

in expected polynomial time.
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Chapter 3

Genus g Graphs have Pagenumber

3.1 Introduction

The main result of this chapter is an extension of tile results in HI and ('hapler 2.

We show that O(\ -) pages do indeed suffice for the class of genus q graphs. tihus

verifying the Heath-Istrail Conjecture. As in Chapter 2. we also give a Las Vegas

algorithm to embed a genus g graph in O(\ g) pages.

There are .5 sections that follow. Section 3.2 reviews the crucial results we need

from the paper by Heath and Istrail 'Hl". To make the thesis more self-contained.

proofs of all their results are included in the section. Section introduces an un-

portant class of graph-like objects called "chain graphs" and establishes an upper

bound on their pagenumbers. Chain graphs play a major role in our embedding

strategy for genus g graphs. Section 3.4 derives the O(\ g) upper bound on pa-

genumber for a simple and instructive class of genus y graphs. Section 3.5 deriveq
the O(\,,) upper bound for general genus q graphs. Finally in Section 3.6 we sup-

ply a Las Vegas algorithm to embed any genus g graph in 0(\ ) pages when both

the graph and its initial surface embedding are provided as input.
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*3.2 Embedding Genus g Graphs in O(g) Pages:

The Heath-Istrail Algorithm

3.2.1 Introduction

The algorithm of Heath and Istrail [HI], which embeds a genus g graph in 0(g)

pages, is a fundamental building block in our O(\,i,)-page embedding strategy. For

the sake of completeness, we review their results in the present section. and include

proofs of all the lemmas. We stress that there is no original research on our part

contained in this section.

To begin, we need a few definitions. We follow the developement of White \V

for graphs embedded in surfaces. An orientable surface of genus q is a sphere

ith g handies-a handle is a cylindrical tube whose ends are attatched to the

boundaries of two disks cut in the sphere. Figure 3.1(a) shows a sphere with Iwo

handles. A nonorientable surface of genus g is a sphere with g cross-caps. which

are defined as follows. Continuously deform a cylindrical tube so that each point on

one of its circular boundaries is mapped to the point diametrically opposite. This

yields a surface that intersects itself in 3-space. but not in 4-space. \We get a cross-

cap by attatching this new object to the boundaries of two disks cut in the sphere.

Figure 3.1(b) depicts a sphere with two cross-caps. A connected graph G = (V. L)

is embedded in a surface if it is drawn on the surface without crossing edges. The

genus of G, -I(G), is the minimum genus of an orientable surface into which G is

embeddable. The nonorientable genus of G, -'(G), is analogous for nonorientable

surfaces. Connected components of the complement of an embedding of G are the

faces of the embedding. The embedding is 2-cell if every face is homeomorphic

to an open disk. It so happens. that any embedding of G in an orientable surface

of genus y(G) is a 2-cell emb( 1d" g. (See Wh[. Theorem 6.11.) The analogous

statement for nonorientable surfaces is not necessarily true.

I I I25



Figure 3.1: A sphere with two handles is shown in (a). A sphere wit I two cross,-caps

is shIown- in (1).,



The Heath-Istrail algorithm starts initially with a connected n-node graph G

(V, f) of genus g that is 2-cell embedded in a surface S of (orientable or nonori-

entable) genus g. (Such an embedding can be computed in time O(n(g)) by an

algorithm of Filotti, Miller, and Rief ]FMRJ.) G is then embedded in O(g) pages

by applying a linear-time algorithm, an important aspect of which is an interesting

decomposition for a graph embedded on a surface.

Since our result that genus g graphs have pagenumber O(V9) is established only

for orientable genus g, we will discuss the algorithm of Heath and Istrail that deals

only with orientable surfaces. We leave it as an open question whether or not. a

graph of nonorientable genus g has an 0(\, )-page embedding. From now on. when

we speak of genus we will always mean orientable genus.

There are 3 subsections that follow. Subsection 3.2.2 develops the decomposition

mentioned above, for graphs embedded on surfaces. The book embedding algorit hin

is given in Subsection 3.2.3. Finally Subsection 3.2.4 is reserved for two definitions

that will be important later on.

3.2.2 The Decomposition

In order to define this decomposition. we need a combinatorial representation of

graphs embedded in surfaces due to Edmunds [Ed]. For each v, : V. the neigh-

borhood of v is N(t) = {u(ut.v) -}. A rotation of G is a set of 1-1 cyclic

permutations, one for each vertex:

R = {aIjv E V and ao is a cyclic permutation of N(v)}

If H = (VH,CeH) is a subgraph of G. define NH(v) = {uI(u,v) E (H}. If aU.

is a cyclic permutation of N(v). then define aO..H to be the cyclic permutation of

NH(v) that is consistent with the cyclic order of ac.. A rotation R of G induces the

subrotation RH = {c.vHIV E V H} of H.

Rotations can be used to represent surface embeddings. If G has a 2-cell em-

bedding in an orientable surface, there is a rotation R representing this embeddiulg:

lI 27



or is given by examining the vertices adjacent to t,, in clockwise order about v (on

the surface).

A planar-nonplanar decomposition of G = (Vo) is a triple (R. Gp, SN ) that

satisfies three properties. Here R is a rotation representing a 2-cell embedding of G

into an orientable surface, Gp = (1'. Sp) is a planar subgraph of G. and (NX = 'F - ep.

The properties satisfied are

(1) The subrotation RC, induces a planar embedding of Gp.

(2) Every edge of Ev has both endpoints on the exterior face of Gp.

(3) ,¢p is maximal. i.e. no edge of &N can be added to Gp without violating either

property (1) or (2).

The edges in r, are refered to as the nonplanar edges of the decomposition.

For example. given the graph in Figure 3.2(a). a choice for Gp is shown in Figure

3.2(b). The nonplanar edges are (t'I.t 4 ) and (r3 .t' ).

Take F, to be the exterior face of the planar embedding Gp. We can imagine

traversing the boundary of F, in. say. clockwise order. This defines a directed cYcle

(which is typically not simple as Gp may have articulation points and cut-edges.)

A directed subpath of this directed cycle is a trace. If the trace T consists of

v I. v. ...... y. then denote the trace by

T = v'1 -- V 2 ... t.

The endpoints of T are v, and vy. The inverse trace to T is

T
- 1 

= vt - vt_1 ... . Ul,

i.e. the trace obtained by traversing T in the reverse direction. In Figure 3.3 for

example.

W 4 -- U 5 - U'r - W7 - '8 - W 5

28



Irr,

1rr

Figure 3.2: Given the graph in (a), a choice for GF, is shown in (h). Thle nonplaia~r

edges are (?'I , '4) and (Z'3, t 5l).
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W3  W6  W7

W4  w5  w8

Figure 3.3: Traversal of the boundary of the planar p~art. (Taken from I-1! .
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is a trace with inverse trace

W5 --- 1 -4W - -G W L 4 .

The path

W 2  W3 " W 4 - W

is not a trace because it does not follow a clockwise or counterclockwise traversal

of the boundary of Gp.

Given a planar-nonplanar decomposition (R.Gp,SN) of G. we can partition

FN into equivalence classes. Suppose that (u-.v 1 ).(u..t'2 ) ' ,-. are part of tlhe

boundary of the same face F of the surface embedding of G. and that F is not a

face of Gp. Then (uj. t') and (u'.1'2) are homotopic fwritten (ul. tl) -,h (U, V) i

if

(1) ( 1.t ) and (u2.V 2 ) are the only edges of E..- on the boundary of F:

(2) there are traces T,, = u, -.... u., and T, ' .= . r, such that ho 1

T, and T, lie on the boundary of F.

If (u 1.rl) and (u2 . 12) are homotopic. then the entire boundary of F consisis

of (t'.r').(u. 2 ).T ,. and T,.,. The relation -h is defined to he the reflexive.

symmetric, transitive closure of -h. Clearly =h is an equivalence relation on

Each equivalence class is called a homotopy class. (Notice that a homotopy class

can consist of a single edge.) Consider Figure 3.4. Here the oval represents the

boundary of Gp, and the bold lines represent nonplanar edges. The three homotopy

classes are

and

U7- Z'7), (U/8- VS)3 (U1 , 1'9)).



Figure 3.4: Honiotopv classes. (Taken from I)



In all the lemmas that follow, let G be a graph 2-cell embedded in an orientable

surface S.

Lemma 3.2.1. [HI] If C is a homotopy class of G. then the elements of C can be

ordered

(u. Iv 1 ).(Uk, Vk)

and two traces T1 and T, defined such that

(1) for 1 < i < k- 1. (u,.t,,) is homotopic to (u, +.,, 1VI) with corresponding traces

T, and T,.,:

(2) T is the concatenation of

T, T,. . T11-_

and 7 is the concatenation of

T, T, T

Note that u,. v,-_ need not be distinct, and t,,. , l need not be distinct. How-

ever. u, = u,+, and v, = v,. is not allowed as G may not have multiple edges.

Proof. An enumeration that satisfies (1) is clearly possible since every edge of

a 2-cell embedding is incident to only two faces. We must show that such an

enumeration yields a T, and T2 that are traces.

To show this, we want to make a simplifying assumption that needs a little

argument. We want to show that without loss of generality, we can assume any two

homotopic edges of C determine a triangular face. Fix a nontriangular face F of

G bounded by two homotopic edges (uj, Vi),(u,+1.v+ 1) : C and the corresponding

traces T,,,T,,. Create a new graph G' by adding an edge (gu, v) (distinct from

(u1jv,) and (ujl .t, 1)) inside F that spans T, and T,.. Then (u, v)) is homotopic
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to (p,v,) with corresponding traces T' .T,'. and (tt,v) is homotopic to (u,+, t,+,)

with corresponding traces T,, T,. Hence we can extend the decomposition of G to

a decomposition of G' for which C' = C (, {(,u. v)} is a homotopy class, and notice

that if we concatenate the associated traces of C' we get exactly T and T.. No

other homotopy class of G is affected by the addition of (tt,v). Thus without

loss of generality, we may assume that any two homotopic edges of C determine a

triangular face.

Let R = {C, - V} be the (clockwise) rotation of G representing its 2-cell

embedding. Suppose (u,_ 1 ,r',_) is homotopic to (u,.t,') which is homotopic to

(u,+ 1. ',+), and let us assume for contradiction that u,- 1 - u, - u,-, is not a trace

and u,- 1 .= i, = u,+,. Since v,-' = v, = i, 4. we will denote them all by . We

can immediately rule out the possibility that u, = u,-, and u,. u, since in

this case G would have multiple edges. The only other possibility to coisider is the

case where it, is an articulation point of Gp. n, = zi,_. and u,- 1_ = ,. (Sve

Figure 3.5.) Starting with the edge (u,.u,_1 ) - Gp. imagine sweeping clockwise

about u, in the plane. Since u,- - , u,- 1 is not a trace, we encounter an edge

(u,.z) C Gp before we encounter the edge (u,.u,_1 ) - Gp. But the assumption

that (u,_.v,_,) - h (u,.t,) - h (u, I..',._,) implies that or,(u,_,) = t- and ,1,(,)

u,. 1. Hence. to be consistent with the rotation R. u,. 1 should be the next edge

of Gp immediately clockwise from (u,.u,_1 ) about u,. Figure 6 is therefore an

impossibility. M

Lemma 3.2.2. [HI] Traces from different homotopy classes do not intersect except

possibly at endpoints and articulation points of Gp.

Proof. Let T, and T2 be traces from different homotopy classes. If T shares a

vertex v interior to TI. and v is not an articulation point of Gp, then T2 shares an

interior edge of T1. Such an edge would be incident to three faces-one in Gp, and

two outside Gp. But in a 2-cell embedding. every edge is incident to precisely two

faces. Thus T2. can only share vertices of the specified kind with Ti. U
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Figure 3.5: Conist ruct ion for Lemma 3.2.1.



Figure 3.6 shows the possible trace intersections for different homotopy classes.

As the boundary of the planar graph is traversed in a consistent direction, each

of the two traces of a homotopy class is encountered exactly once. When the traces

are traversed in opposite orders, the homotopy class is orientable. When the two

traces are traversed in the same order. the homotopy class is nonorientable. In

Figure 3.4, the homotopy classes

{(U I .t v)? (U ., ?'-. (U. 3 )

and

{(U. V'), (U 8. VF). (U., V )}

are orientabie. where as the homotopy class

is nonorientable.

Lemma 3.2.3. [HI] Every homotopy class of any planar-nonplanar decomposit ion

of G is orientable.

Proof. Fix a planar-nonplanar decomposition of G. and let C be a homotopy class

of the decomposition. As in the proof of Lemma 3.2.1. we may assume without loss

of generality, that every pair of homotopic edges in C determines a triangular face.

Suppose. for contradiction, that C is a nonorientable homotopy class. Let its

traces be T, and T2 (both traces directed clockwise, say, about the boundary of

Gp). Niether trace consists of just a single vertex, otherwise C is orientable. Hence.

there is a subtrace u, - u,+i, u, -- U, l of T, and a subtrace tv,' 11+1. : ? *)+1

of T2 such that (u,,v 1j),(u,+,.v,+) Ei C and such that either: (1) (u,,,) ) _ C

and (u,,v,) -h (u,,Vj5l) -h (ui+,.,'> 1 ). or (2) (u,+i, ,) E C and (-,,h,) h

(u+I, ,J) h (U, 1 ',+1 ). Without loss of generality, say (1) holds. (See Figure

:.7.) Then the cycle
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Friguire 3.6: Possible trace intersections for different homotop' classes.
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Figure 3).7: Construct ion for Lemmna 3.2.3.



is a simple closed curve on the surface S. Since (u,.u,. t'e. 1 ) is a face. and

(u," v). J!." 1 ) is a face. the interior of -1 is homeomorphic to an open disk. Draw

another simple closed curve y on S with the following properties: (1) the interior

of -. , is homeomorphic to an open disk and disjoint from the interior of -,l; (2) -;

shares the edges (u,.u,, 1 )., (2). t'1z) E Gp with -l. but no other points of %; (3) the

remainder of Gp is contained in the interior of -. If we traverse -y on S clockwise.

we visit the vertices u,, u, 1., c), U,+1 in precisely this order. Since the interior of -,,

is disjoint from the interior of -1. if we traverse -11 on .S counterclockwise we visit

these vertices also in the same order. But this is a contradiction, since (u,,,. r,) is

not an edge that belongs to ";i. *

The next lemma relates the number ( homotopy (lasses to he getn us (If h,

surface.

Lemma 3.2.4. [HI] If the surface 5 has genus q 1. then any planar-nonhplanar

decomposition of G7 has at most 6g - "3 homotopy classes.

Proof. Fix a planar-nonplanar decomposition (R. p. &. ) of G. Then & 2 . .

otherwise G is planar. Draw a circle around the planar embedding of (7, that

intersects each nonplanar edge exactly twice. (See Figure 3.8.) Create a new graph

H by placing a new vertex at each such intersection, and erasing everything froni

the interior of the circle. H now has a 2-cell embedding in S and a planar-nonplanar

decomposition with the same number of homotopy classes as G. The circle is the

planar part of H. and the remaining edges are the nonplanar part. Let F be a face

of H determined by two homotopic edges of H. Notice F is bounded hy a .l-cycle

consisting of two nonplanar edges. and two planar edges. If we contract the two

planar edges on the boundary of F and eliminate thE multiple edge. the resulting

graph H' has a 2-cell embedding in S and a decomposition with the same numer

of hornotopy classes as G. By repeating this procedure. we eventually end up '\ith
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Figure 13.8: Construction for Lemmfa 3.2.4.
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a graph H that has the same number of homotopy classes as G, and such that each

homotopy class consists of a single edge.

Consider the embedding of H' = (V'. ") on S. and let v Vl~e S 1. h

of homotopy classes, and f=,*r of faces. Euler's formula for orientable surfaces of

genus g is

v - e ± f =2 - 2g.

Notice that 2e = 3v as H is regular of degree 3. and 2h = v since each vertex

is incident to exactly one homotopy class. The interior face of H has exactly r

incident edges. and all of the remaining f - 1 faces have at least 6 incident edges (if

a face had only 4 incident edges. the two nonplanar edges bounding the face would

have been merged in the contracting steps.) Thus 6(f - 1) - t - 2e. Combininrg

this last inequality with the otier equations N *'ds 17 = ' 2 6g - 3. N

3.2.3 The Book-Embedding Algorithm

There are two stages to the algorithm BOOK-E.MBED. which book-embeds a coii-

nected graph initially drawn on an orientable surface without crossings. The first

stage. DECOMPOSE (see Figure 3.9). takes the input graph G which is 2-cell

embedded in an orientable surface S of genus g. and outputs a planar-nonplanar

decomposition of G. The second stage. PAGES. takes as input a planar-nonplanar

decomposition of G and outputs a book-embedding of G using 0(g) pages.

The first step of DECOMPOSE extends G to a surface triangulation GT

(VT, ET) without loops or multiple edges. This is done as follows. Consider a non-

triangular face F in the embedding of G. Place a vertex vf inside F and triangulate

F by adding edges that connect Vf to all vertices on the boundary of F. Since the

boundary of F may have multiple vertices, it is possibile that this triangulation in-

troduces multiple edges. Suppose (tptv) is one such copy of a multiple edge. Then

(v, v) is incident to two triangular faces (rl. r , t') and (v,, vf, v) where t', and ,

are on the boundary of F. Notice vi = v2 , otherwise G would have multiple edges.
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(1) GT = (V, E2 .) - a surface triangulation of G

(2) Gp = (Vp, Ep) - some face of GT

(3) while Vp 0 V do

(4) if 3 safe vertex vk (with respect to vi - v,)

(5) then (* add a safe vertex .)

(6) VP - Vp U {vk)

(7) Ep - EP U I{(v, Vk), (vi, vO)

(8) else (o start a new block *)

(9) W'- newest vertex in Vp incident to a vertex in V - Vp

(10) w - vertex in V - Vp adjacent to u/ (. see text *)

(11) V,:P - vp u{ )

(12) Ep - Ep U {(wI, w'))

(13) while 3 safe edge (vi,vk) E EN do

(14) Ep - Ep U {(v,, vk)) (. add a safe edge *)

(15) enddo

(.36) enddo

Figure 3.9: Algorithm DECOMPOSE (taken from [I]j.)
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Add a vertex v, to the middle of the edge (vf,v), and triangulate the two incident

faces by adding the edges (vI, v,), (v 2 , v,. The multiple edge (v, v) has now been

eliminated. If we perform this entire procedure on all nontriangular faces and all

multiple edges introduced, we end up with the desired triangulation Gr.

After triangulating, DECOMPOSE is ready to generate a planar-nonplanar de-

composition of GT. Initially DECOMPOSE chooses one triangular face as the pla-

nar part, and adds faces incrementally. At any stage of the algorithm. Gp = (Vp, Cp)

represents the planar part constructed so far. and eN = 6C. - Cp represents those

edges of GT which are currently nonplanar. There are two kinds of edges in Cv.

Those with both endpoints in the current I p will remain nonplanar to the end of

DECOMPOSE. But those with at least one vertex in V - Vp. still have a chance

of becoming edges of Gp at a later time. nnnn Fix a clockwise orientation for the

current boundail; of Gp. if v, - v - t'k is a trace of Gp and (t,. rj. 'k) is a face of

the embedding. then (k,. V'k) -T is called a safe edge (See Figure 3.10). If r, - r,

is a trace of Gp. vk _ " - Up, and (t,.. .). ) is a face of the embedding, then ?k-

is a safe vertex with respect to vi - v, (See Figure 3.11). Clearly. in a planar-

nonplanar decomposition of G. there can be no safe vertices (since V - V 2 = ).

and no safe edges (otherwise Gp is not maximal with respect to properties (I) and

(2) in the definition of planar-nonplanar decomposition). Typically. DECOMPOSE

chooses safe vertices (steps (7-8)) and safe edges (steps (14-16)) and adds them to

Gp. When it happens that we cannot extend Gp in this manner, an unsafe vertex

in V - Vp adjacent to the boundary of Gp is selected in (steps (9-10)).

As the algorithm progresses, vertices and edges of Gp are assigned "ages" to

indicate the relative order in which they were added. Steps (9-10) select a vertex

w 9 V - Vp that is adjacent to the newest vertex w' on the boundary of Gp. The

choice of w is as follows. Let (x, w') be any edge Gp that is incident to u.'. Starting

with the edge (x,w'). sweep clockwise about w' on the surface S until the first edge

that connects u"' to a vertex in V - VP is encountered. Take w to be this vertex.
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Figure 3.10: A safe edge.



Arv-

Figure 3.11: A safe vertex.
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(See Figure 3.12.)

Whenever steps (9-12) are executed, the current block of Gp cannot be extended.

Hence the algorithm initiates a new block of Gp. By using the newest w' in step

(9), the blocks of Gp are constructed in depth-first order-the new block and all

its descendants will be completed before the current block is again visited.

At any stage of DECOMPOSE homotopy classes are defined on the nonplanar

edges with both endpoints in the current VP. With the addition of new vertices in

steps (6-7) and (9-12), and new edges in step (14), homotopy classes are originating.

growing, and merging. To avoid confusion, we want to distinguish between homo-

topy classes that exist while DECOMPOSE is still running, and homotopy classes

that exist at the completion of DECOMPOSE. Call the former classes transitional

and the latter classes conclusive.

Lemma 3.2.5. [HI] Let C' be a conclusive homotopy class with traces T, -

ll u .... ul, and T, = ul. t' ... t-1,. Then C has one of three forms:

1. No edge of C' has both endpomtts on the same block of Gp. In this case. at

least one trace of C is degenerate (i.e. is a single point.)

2. Some edge of C' has both endpoints on the same block of Gp. In this case one

of two situations hold:

(a) There is a subtrace S 2 = T',. t' +.... t'j of T, such that both T, and Y,

have all their vertices in the same block of Gp and every edge of C'

incident to vj,...,v, is incident to the endpoint ul and every edge of C

incident to v,,... , vt is incident to the endpoint u..

(b) There is an initial subtrace S = ul ..... u, of T, and an end subtrace

S2 = V .... , vt of T2 such that both S, and S2 have all there vertices

in the same block of Gp and every edge of C incident to v1 . . . . . ,j is

incident to the endpoint u . and every edge of C incident to u,,..... 11, is

incident to the endpoint v,.
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Furthermore. neither T, nor T2 is self-intersecting, and T, does not intersect T..

Proof. There arc two situationq to considcr.

(i) Suppose some first edge of C connects a vertex in the current block to a 'ertex

in a different block. We assume this edge is introduced by execution of steps

(6-7): the case where steps (9-12) introduce some first edge is similar.

Suppose (Vk,Z) is some first edge of C, and - i not in the current. block.

Then no other edge incident to Uk is homotopic to (t'k.z): otherwise. r' is a

safe vertex for the block z is in and would have been added earlier to that

bock. If r is any future vertex added to Gp and ( _.z) q C. then 11 cannot

introduce an edge homotopic to ('.z) for the same reason. Thus C consists

of edges incident only to z.

Let T, = 1  and T, be the other trace of C'. WVe claim T, cannot be elf-

intersecting (at an articulation point o of Gp). For suppose 11, .... 02

is a subtrace of T, that lies entirely on a "leaF' block B of Gp (viewing th

block structure of GF as a tree). and ( = ii, = ui is an articulation point

of Gp. Then ((x.u,. ,z) and (a, u_ 1. z) are faces of the surface embedding.

which means that B contains all the planar edges incident to a (rememnber

(o. z). (tt,+ 1 . z) and (U,-,. z) are nonplanar edges). But this contradicts t lie

assumption that a is an articulation point of Gp.

(ii) Suppose (Vk,Z) is a first edge of C and Vk is in the same block B as z. Let

St = X1 -- X2 . ...- -- x, and S2 = Y1 -- Y2 . . -- o + Y( be the traces of

the transitional homotopy class that contains (tVk, z) just before step IBI(9) is

oxecuted. Both S and S, lie entirely on B since the first edge of C has both

endpoints in B and only the block B is extended before execution of step (9).

Notice x, y, and x, = y, as G does not have multiple edges. Therefore

and S2 do not intersect.
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Clearly, the only vertices of these traces that can be adjacent to vertices in

V - Vp are the endpoints. If adding w in step (10) is going to extend this

transitional homotopy class, either (x 1 . w), (yl,w) E S or (x,, w), (y,u') :_ S.

Without loss of generality, assume the second possibility holds. Also without

loss of generality, assume yt is newer than x,. Then in step (10). we have u,' =

yt, and the addition of w extends the trace S2 to S 2 - yt+1, where w = Yt4..

Let B' be the new block initiated by the addition of yt+i. As long as we can

add vertices to B' and its descendants. the trace S, is not extended (otherwise

there would be safe vertices for B). Let T, = S2 - yf± 1 ..... y,-, be the

extended trace at the time we complete B' and all its descendants. All the

nonplanar edges of C contributed by Yt~l..Yt- are incident to x., (otherwise

there would be safe vertices for B). and the extended trace T.2 is never self-

intersecting (by the same argument used in case (i).) Thus yt , is not in B. We

claim the trace S can never be extended beyond xo. For contadict ion. slippose

we could extend S'1 to 11 - x, ,. Then (x,. x.. ) - Ep. ari (J-i., ,." ) - ,

0 is homotopic to (X &vYt '. But before the addition of x., 1 to (;'. the

vertex y,,. which is newer than x. is adjacent to x- K - p. Hence a new

)lock should have been started at yt.,.. contradicting our assumption that 1B'

and its descendants were completed. Thus .51 cannot be extended beyond .r,.

Similar arguments applied to the other sides of S, and S2 give traces of the

desired form. U

Figures 3.13, 3.14, and 3.15 show homotopy classes of types 1, 2(a). and 2(b),

respectively.

The second stage, PAGES. takes as input a planar-nonplanar decomposition of

G. and outputs a book embedding of G with 0(g) pages. This is done as follows.

By an algorithm of Yannakakis tYa , any biconnected planar graph can be given a

4-page embedding in linear time which maintains the cyclic order of the boundary

vertices. For an arbitrary planar graph. an algorithm of Heath [Hej combines the
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Figure 3.13: Homotopy class of type 1.
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TIt

Figure 3.14: Homotopy class; of type 2(a).



Tz4

Figure 3.15: Hornotopv- class of type 2(b).
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4-page embeddings for all the blocks in linear time. and yields a 4-page embedding

for the entire graph that maintains the cyclic order of the boundary vertices on

each block. Hence Gp has such a 4-page embedding. A vertex order has now boen

established, and all the edges of ip have been assigned to pages. Now we allocate

3 pages for each homotopy class in ,v. (In the degenerate case. one page suffices

for the homotopy class.) Allot one page for the edges between vertices of the same

block, and two pages for the remaining edges of the homotopy clazs (the two "fans").

The resulting embedding requires at most 4 -- 3(6g - 3) = 18g - 5 pages.

The entire algorithm BOOK-EMBED can be shown to run in time O(i -- .q.

(See jHI.)

3.2.4 Some Additional Definitions

Certain vertices belonging to the traces of a homotopy class will have special signif-

icance in the sections that follow. These are called critical vertices. Suppose U

is a type 2 ((a) or (b)) homotopy class with traces T, and T.2. Let $ and b' he the,

Iongqest subtraces of T, and T-, respectively. such that .S'i and S lie entirely oni t1,

same block. The critical vertices of C are the endpoints of , and .'. For example,.

u1 .u,. is. and r't are the critical vertices of the homotopy class in Figure 3.15. The

critical vertices of a type 1 homotopy class are simply its degenerate traces. The

important fact about critical vertices is that they cover all nonplanar edges incident

to articulation points of Gp.

Remove the critical vertices from S, and S,,, and denote the resulting subtraces

by S, and S!. respectively. We will refer to these as the foundational subtraces

of T, and T2 . respectively.



3.3 The Chain Graph Lemma

A chain graph consists of a set V of vertices, a partition {C1.C... C,} of I into

linearly ordered subsets called chains, and a collection S of two-element subsets of

V (called edges). each of which is incident to two distinct chains.

An example of a chain graph is shown in Figure 3.16.

Chain graphs are important objects in our embedding strategy for genus q

graphs. The basic approach we take in Sections 3.4 and 3.5 is as follows. \Ve start

initially with an 0(g)-page book embedding B of G = (V. E) given by the Heath-

Istrail algorithm. Considering the embedding B as it stands. homotopy classes may

interact in such a way as to require P(g) pages with respect to the given vertex or-

dering. Our goal will be to permute the vertices in a manner that keeps homotopy

classes intact, but uncrosses them as much as possible without disturbing the edges

of (4p too badly. This simple intuition is made more precise below.

The embedding B dictates a decomposition of G into a constant number of sul-

graphs, and a partition of the linear ordering of V into intervals. We introduce

an equivalence relation on the edges of each subgraph by saying. roughly, that two

edges are in the same equivalence class iff they connect the same pair of intervals.

Equivalence classes behave and interact in a nice manner that allows us to represent

each subgraph by a "quotient- chain graph-one chain for each interval and one

edge for each equivalence class. Rearranging the chains of one of these chain graphs

corresponds to rearranging the intervals of V in exactly the same way. The repre-

sentation of subgraphs by quotient chain graphs satisfies three very nice properties:

(a) no two edges of a quotient chain graph connect the same pair of chains: (b)

each quotient chain graph has only 0(g) edges. and (c) any "book embedding*" of a

quotient chain graph in t pages corresponds to a book embedding of the represented

subgraph in t pages. To finish our construction. we apply a lemma that says any

chain graph with E edges, no two of which are incident to the same pair of chains.

can be embedded in 0(vE) pages with respect to almost any linear juxtaposition
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Figure 3.16: A chain graph.
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of its chains. Ultimately, this allows us to rearrange the intervals of V to obtain a

new linear ordering for which we can simultaneously embed each subgraph of G in

O(v ) pages.

The outline above contains slight inaccuracies, but does indicate the basic ap-

proach. In actuality, we need a slightly stronger form of the last lemma about

embedding chain graphs and that is what we develop now.

Let H be a chain graph. A chain subgraph of H is a chain graph whose chain

set and edge set are subsets of H's chain set and edge set. respectively.

H is star-linked if the bipartite graph induced by any pair of chains is a KI.r

for some r _ 0. In the case that r = 0 or 1 for every pair of chains. then H is

1-linked.

A linear ordering or permutation of the chains in H is a linear arrangement

of the vertices in which chains do not interleave and the linear order wvihin each

chain is preserved. It is useful to think of a linear ordering as being horizontal, so

smaller elements are to the left and larger elements to the right.

We can now state our main lemma precisely.

Chain Graph Lemma. Let H be a star-linked chain graph with E edges on ?

chains, where E n. Given a random linear ordering -r of the chains, the probability

that H can be embedded in 28, E pages with respect to 7, is at least 1 - (1 2)8'

Again, suppose H is a chain graph. By collapsing each chain to a single point

and identifying multiple edges, we obtain the quotient graph, Q(H).

Proving the Chain Graph Lemma is not simply a matter of applying Theorem

2.2.1 to the quotient graph Q(H). This is because a page of Q(H) may correspond to

many pages of H. Although our proof of the Chain Graph Lemma will essentially

mimmick the proof of Theorem 2.2.1, there is more subtlety involved. (We will

explain why shortly.) To get started, we need a few definitions and preliminary

lemmas analogous to those of Chapter 2.
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A bipartite chain graph (BCG) is a chain graph for which it is possible to

assign each chain one of two colors, say LEFT or RIGHT, so that no edge connects

two chains of the same color. A 2-colored bipartite chain graph (2BCG) is a

BCG with an associated 2-coloring of the chains such that no edge connects two

chains of the same color. So, for example, if H is a BCG and Q(H) has exactly d

connected components, then H can be 2-colored in 2 " different ways with the colors

LEFT and RIGHT.

A 2BCG is canonically ordered if its chains are linearly ordered so that all

LEFT chains precede all RIGHT chains.

Given - (horizontal) lincar ordering of the chains in a chain graph and an edge

e, denote the left and right endpoints of e by I(e) and r(e) respectively.

A 2BCG is completely crossing with respect to the canonical ordering 7- if its

edges can be labeled el.e2 ..... ek so tha.

I(e,) ...(e2) , (e) and r(e.) <, r(ej < i.. r(ed.

Intuitively, a 2BCG is completely crossing if no edge can be placed on the saine

page as another'edge with respect to the vertex ordering ,7. If a star-linked 2BC(

is completely cro-ing. then clearly it must be 1-linked.

We have the obvious analog of Lemma 2.2.1 for chain graphs.

Lemma 3.3.1. Let 7r canonically order the 2BCG H. If at most k edges are

completely crossing with respect to it, then H can be embedded in at most k pages

with respect to 7r.

We also have an analog of Lemma 2.2.2.

Lemma 3.3.2. A star-linked chain graph H on n chains can be embedded in ?i + I

pages with respect to any linear ordering of the chains.

Proof. By the proof of Lemma 2.2.2. K, can be embedded in [n/2] pages so that

the edges on any page form a subgraph of a path. We apply this as follows. Obt,3in



the quotient graph Q(H) and fix a linear ordering 7r of its vertices. Since Q(H) is

a subgraph of K,, it can be embedded in [n/21 pages with respect to 7r, and the

edges on any page can be colored with two colors so that adjacent edges are not

assigned the same color. To embed H in n + 1 pages with the corresponding order

on chains, take those edges of Q(H) that are on the same page and of one color.

and embed their preimages from H on a single page. We thus allot two pages to

H, for every one page of Q(H). U

As mentioned earlier, the Chain Graph Lemma is rather more difficult to estab-

lish than Theorem 2.2.1. and the reason is that we know nothing at the moment

about the structure of completely crossing 2BCG's. In particular. we do not know

how many chains belong to a completely crossing 2BCG with k edges. Thus we

do ot know ho, .,any canonical orderings it has. or how many of them make it

completely crossing. In Theorem 2.2.1. we were relying heavily on the fact 1ha

a completely crossing 2BG is a matching. This makes it easy to obtain the exaict

probability that a 2BG is completely crossing with respect to a random canonical

ordering. To get even a good upper bound on the analogous probability for a 2BC(;.

we need more information regarding the structure of completely crossing 2BCG's.

In the four lemmas that follow. J is a 1-linked 2BCG and r a canonical orderiitg

of .1.

Lemma 3.3.3. If J is completely crossing with respect to r, then Q(J) is a forest.

Proof: If Q(J) is not a forest, then it contains an even cycle. Let -y be a 1-linked

2BCG such that Q(y) is a cycle with 2k edges. We aim to show that -Y cannot be

made completely crossing with respect to any canonical ordering. Enumerate lhe

edges of in cycle order el,e...... .e2k, so that e2k shares its LEFT chain with el

and its RIGHT chain with e2k-1. Now suppose e..... e2k-1 is completely crossing

with respect to a canonical ordering 7r and that without loss of generality. el's left
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endpoint is leftmost of all edges. A simple induction on i demonstates that

1(el) < .1(e2 ) <,, . . I<, (e,) and r(el) <, r(e 2 ) <,'.. <, r(e,)

for all i < 2k - 1. In particular. this holds for i = 2k - 1. But we know that e2k

shares its LEFT chain with el and its RIGHT chain with e2k-1, and hence can be

placed on the same page as e2. N

Lemna 3.3.4. If Q(J) is a tree. then at most one canonical ordering makes J

completely crossing.

Proof: Do a breadth-first search of J from some initial starting chain. A trivial

induction on i shows that the structure of J forces the canonical ordering of chains

tlha,. I tkes edges in levels I ..... completely crossing (if such an ordering exists.)

U

Lemma 3.3.5. Let J be completely crossing with respect to ,r and suppose Q(.1)

is the union of a tree T and an isolated edge e. Then with respect to 7-. one chain

of e succeeds all LEFT chains of T and precedes all RIGHT chains of T. and th

other chain either precedes or succeeds all chains of T.

Proof: Suppose. for contradiction, that the chains of e are not positioned as stated.

Denote the LEFT chain of e by L(e). and the RIGHT chain of e by R(e). Let ' be

the component of J whose quotient graph is T, and let C(J') be the set of chains

in J'. We define four subsets of C(J') as follows. Let Lin be the set of LEFT chains

between L(e) and R(e); let Rin be the set of RIGHT chains between L(e) and R(e);

let L,,,t be the set of LEFT chains not between L(e) and R(e); let R,t be the set of

RIGHT chains not between L(e) and R(e). Since J is completely crossing. no edge

of J' can be placed on the same page as e with respect to 7r. This means there can

be no edge connecting chains in Lout 11 Ri, with chains in Lin L, R,,,t. Since neitler

union is empty, Q(J') is not connected, contradicting the fact that T is a tree. N
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Combining Lemmas 3.3.4 and 3.3.5, we have

Lemma 3.3.6. If J is completely crossing with respect to 7r and Q(J) is a forest

with d trees. then exactly d! canonical orderings make J completely crossing.

Notice that if Q(J) is a forest with d trees, then J has E(J) + d chains and

hence can be canonically ordered in

(= of LEFT chains)! x (# of RIGHT chains)! > (E(J) - d) 1 2

different ways.

We are now ready to establish the Chain Graph Lemma. The proof from this

point on is similar to that of Theorem 2.2.1.

Proof of Chain Graph Lemma. Pick a random linear ordering -r of the chains

of H. Partition the edges of H into log n "levels- as follows. To obtain the i-level

edges (1 - j - log n). first divide 7r into 23 segments each with the same number

of chains. Label the segments from left to right L.R.L.R.L. etc. Any edge that

connects chains in an adjacent L.R pair of segments is a j-level edge. Notice that

every edge of H is in a unique level.

Let A'. be the event that there exists a bipartite chain subgraph J of H with

k edges. and a 2-coloring X of J, such that J is canonically ordered. j-level. and

completely crossing with respect to 7r. Since H is star-linked, such a J must be

1-linked. By Lemma 3.3.3, Q(J) must also be a forest. We have

PrJAJ] < E 2i- lk I_ k) ~d 12

d=l 1

2 4

where the sum is over the number of trees in Q(J). and

(1) is the number of adjacent L,R segment pairs at the Jth level;

(2) upper bounds the number of J in H (including a designated 2-coloring) such

that Q(J) is a forest with d trees.
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• (3) upper bounds the probability that 7r canonically orders the chains of J by

putting all LEFT chains in a fixed segment labeled L and all RIGHT chains

in the adjacent segment labeled R;

(4) upper bounds the probability that J is completely crossing with respect to ,r

given that 7r canonically orders J.

Using the fact that

[k + d' ,2 (k + d)! k! d! kd!

2 2kd > ;k+d > 2 2k

we obtain

PrA4 ,(E k ~+ 1 2 2 3k Ek 1l k 1I (8e 2'E)k-rA3 <1 2231 )- <  2 k! (- ) k /
k- " i 3 k! ( , -

If we let k. = 4e\ E\ J. then

PrA' ] (1,2)4 '2 (1 2)4e ' \T

where the last inequality follows from the assumption E _ n. The next step is to

show that simultaneously we expect no more than 4e%\ . completely crossing

1-level edges. no more than 4e\ E. \. 2' completely crossing 2-level edges. no more

than 4ev'E1 \2' completely crossing 3-level edges. and so on in a nice geometrically

decreasing fashion. We have

PrIA, V v ... V Alog( /- IVE)
k) k kf,,- ,w "

< Pr[A', V , 'v ... v A log ,z]

( 2, _,4 e'fl/V 2  - (1,2) : ' '4 e * . .. / ( '2) 4 e 
"n

(1,2)s,.

Hence

=g (n uE)i
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Therefore, with probability at least 1 - (1/2) s' ! . a random linear ordering of

the chains allows the j-level edges to be embedded in 4ev'E/v2 J pages (by Lemma

3.3.1) for all j in the range 1 through log (n/vT). (We did not go all the way to level

log n because as j approaches log n. the quantity Pr[AL4] approaches a constant.

and thus we would not obtain a high probability result.)

Observe now that segments at level log (n /v E) contain only V'E chains. Hence

the remaining edges, those in levels I 4- log (ni E) and beyond, can be embedded

in vE pages by Lemma 3.3.2. Thus. for "good- linear orderings, the total number

of pages used to embed all the edges of H is at most

4ex E;i,2 4exe E x 2"-.. 4ex E % 2 E -, 28\ E.-- -- E E -- 8E

3.4 The One-Block Case

In derivimg the 0(-\) upper bound on pagenumber for arbitrary genus . graph

it is useful to focus first on a special case. For this section we will assumle the

leath-Istrail algorithm yields a planar-nonplanar decomposition where G is a

single biconnected component. This situation illustrates most of the ideas used in

the general case. but is less complicated.

Let us suppose Gp consists of only one block. After applying the Heath-lstrail

algorithm, the vertices of G are linearly ordered in a way that preserves the cyclic

order of vertices on the boundary of GF. the edges of Gp are embedded in 4 pages.

and the 0(g) homotopy classes are assigned one to a page (there are no "fans.")

Call the above linear ordering on the vertices L. Let A be the partition of L into

0(g) intervals obtained by "cutting" L immediately before and after each critical

vertex. Thus each critical vertex is placed in an interval by itself.

Divide the edges of G into 5 subgraphs. each on the vertex set 1'. Let G,, be

the graph consisting of all nonplanar edges. and let G 1.G 2 ,G 3 ,G 4 be the 4 pages of

Gp.

62



For each {0..... 4}, define an equivalence relation -,I on the edges of G,:

say two edges are equivalent iff they connect the same pair of intervals. (We choose

to ignore those edges of Gi with both endpoints in the same interval-all such edges

will be placed on one page per subgraph at the end.)

The following properties hold for each Gi.

" Edges in the same equivalence class can be placed on the same page wit lh

respect to L. (Reason: For Gn, this follows because each homotopy class

is orientable (Lemma 3.2.3). For G1 ..... G4. this follows because each is a

planar graph.)

* If e,.e 2 .e 3 are three edges incident to the same interval such that. I(e) 1,

l(e ) "_L 1(e.,) and el -A ea. then el -- e, -A e3 . In other words. a!)

equivalence class incident to an interval determines a subinterval. n,. vortex

of which is incident to another equivalence class. (Reason: The siatemenw

holds for (-,*,, because Lemma 3.2.2 says that traces from different homnotpy

classes do not share interior vertices since Gp consists of a single block. The

statement holds for Gj..... G4 . because each is a planar graph.)

A typical Gi and G, are illustrated in Figures 3.17(a) and 3.17(b), respectively.

Now we can represent each G, by a quotient chain graph H, in the following

way. Represent each equivalence class of edges by a single edge, and each interval

with t incident equivalence classes by a chain with t vertices. Make each chain

vertex incident to exactly one edge, and connect the edges among chains in a manner

that preserves the left-to-right order in which corresponding equivalence classes are

incident to corresponding intervals.

For example. Figure 3.18 is the quotient chain graph of Figure 3.17(b).

Notice that each H, has the same number of chains, one for each interval. and

at most one edge connects a pair of chains in H,. In general, chains in H, and Ht]
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Figure 13.18: Thle quotient chain graph of Figure 3.17(b).



will be hooked up differently, and corresponding chains in each will not be the same

length.

Lemma 3.5.1. Each Hi has only O(g) edges.

Proof. For Hn this follows because each homotopy class contributes at most 5

equivalence classes (here we are using Lemma 3.2.2 which says that traces froni

different, homotopy classes do not share interior vertices since Gp consists of a

single block). For i > 1, this follows because each Hi is an outerplanar chain graph

on O(g) chains. M

If we imagine now permuting the intervals of L (i.e. linearly arranging the

vertices of L so that intervals do not interleave and the linear order within each

interval is preserved), this corresponds to permuting (iil th, same a."; ijt order

of the chains within each H,. No matter what the permutation -r. the following are

true simultaneously foi each G,.

* Edges within an equivalence class can be placed on the same page.

" If two edges of H, can be placed on the same page. then the corresponding

pair of equivalence classes in G, can be placed on the same page.

Therefore. if we can permute the intervals of L in such a way that each 1t, can be

simultaneously embedded in 0(,-) pages with the corresponding order on chains .

then we can embed all of G in 0(s/ ) pages. But we know that such a permutation

exists by the Chain Graph Lemma. U

3.5 The General Case

Now that we can handle the situation where G, has only one block, we are ready

to attack the general case where Gp may have many blocks. First we need a little

notation.
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Let F be the sequence of vertices visited as we traverse the boundary of G4

in clockwise fashion from some initial starting vertex x0 . Notice that articulation

points have multiple occurrences in F. We refer to the first occurrence of an art ic-

ulation point as the primary occurrence. and all later occurrences as secondary.

Let LB be the linear ordering of the boundary vertices of Gp obtained by delet ing

all secondary occurrences of articulation points in F.

Let L be a linear ordering of all the vertices of G which allows Gp to be embedded

in 4 pages and preserves the order of LB. (Such an L exists by the algorithms of

Yannakaks IYal and Heath JHe2l.)

The only significant difference between the general case and the one-block case

is that now traces can intersect at interior vertices (necessarily articulation points

by Lemma 3.2.2.) See Figure 3.6. Since articulation points are allowed only one

occurrence in Lp. traces. in general. may not bt. segments of LB. Thus traces may

interleave in LB.

Let GA be the graph with vertex set V consisting of all edges of G that are

incident to articulation points. The main purpose of this section is to construct a

suitable partition A' of L. and a suitable equivalence relation on the edges of G'

so that the following requirements hold: (1) edges in the same equivalence class can

be placed on the same page with respect to L: (2) every equivalence class of edges

incident to an interval determines a subinterval no vertex of which is incident to

another equivalence class: (3) only O(g) intervals and O(g) equivalence classes are

present. With all these requirements met, we can obtain a well-defined quotient

chain graph HA having all the desired properties.

It, is worth remarking that the partition A from the last section is not a suitable

partition for the general case. This is because an articulation point that belongs to

many blocks of Gp might be a critical vertex for a large number of homotopy classes.

which means there could be far fewer critical vertices than there are lotnotopy

classes. Hence we may not end up with enough intervals to allow us to uncross the
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homotopy classes (requirements (1) and (2) may not be satisfied.)

Yet, the new partition A' is very similar in spirit to the partition A. The key

properties we insist on are that it places each critical vertex in its own interval.

and that it places each foundational subtrace in its own interval. (This gives us the

freedom we need to uncross the homotopy classes.) The construction of A' requires

a short sequence of steps. Let C be a homotopy class. T a trace of C. and r a

critical vertex of C that belongs to T. If we view T as a segment of F. then by

Lemma 3.2.2, T contains exactly one occurrence of v. Define a partition of F into

0(g) intervals as follows. For each triple C. T. and v as above. "cut- F immediatcl

before and after the unique occurrence of r in T. (If r is an articulation point. this

occurrence may be secondary in F. In this case. also "cut" F immediately before

and after the primary occurrence of ' in F.) Doing this for all such triples indcn'

a partiton of F into intervals. i estrict this partition of F to LP (all secondary

occurrences of articulation points vanish.) Notice that each critical vertex is place'l

in an interval by itself. and each foundational subtrace is placed in an interval 1,.

itself. Now choose any partition A' of L into O(g) intervals whose restricionl to LI?

is the one just defined. From now on. when we speak of intervals, we will always

mean those belonging to this partition of L.

Divide tie edges of G into 7 subgraphs. all on the vertex set '. Let Gv be !he

graph consisting of all nonplanar edges incident to exactly i critical vertices. where

.{0.1.2}. Let G 1.G2. G3 . G 4 be the 4 pages of Gr.

Notice that G2 has only 0(g) edges, the largest number that can possibly be

induced by 0(g) vertices in a genus g graph (Euler's Formula). Using the equivalence

relation -A,. we obtain well-defined quotient chain graphs having all the desired

properties for G . ,G4 and for G and G" (the foundational subtraces do not

interleave in LB, and LB preserves the F-order of vertices within each foundational

subtrace.)

Our only concern then, is with edges of G'.. Let us sidestep for a moment.
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Suppose we have p indexed subsets R 1.  R. of L with the property ( ,:

(#) For every j < j, there is no element of R, strictly between two

elements of R,.

Let R be the restriction of L to U R,. and define a partition of R into seginents as

follows. Label an element with a * if it belongs to more than one R,. Label each

remaining element with the index of the unique R, that contains it. To obtain the

partition. let each contiguous set of similarly labeled unstarred elements determine

a segment. and put each starred element in its own segment.

Lemma 3.5.1 There are at most -1p - 3 segments.

Proof. By induction on p.

The lemma clea,,% holds for p = 1. So suppose it holds for p. We will slim

that it holds for p 1. Let F {R 1.R ..... R,_} be an indexed set system with

property (=). Then the system F' ={R2 .R? ..... R,_1 } also has property (=). BY

the induction hypothesis. F' determines at most 4p - 3 segments. Since no set in

I" has an element strictly between two elements of R 1 . the addition of R, to I"

can introduce at most 4 segments (two corresponding to the smallest and largest

elements of I1?. one corresponding to the interior of R 1. and one resulting fron tIle

possibility that R1 splits an already existing segment of F'). Hence F determines al

most (4p- 3 ) -4 = 4(p - 1) -3 segments. N

In a few moments, we will use this lemma to help us understand the nature of

r4'.. Given a trace T in F (so that F = UTV for traces U and V), define the old

vertices of T to be the set of vertices (necessarily articulation points) that appear

both in T and in U. Let the new vertices of T be the set of vertices that occur in

T but not in U.

Associated with each homotopy class C and each critical vertex ,v of C. is a

subtrace T(., consisting of all the vertices (the vertices of a "fan-) to which r is
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adjacent by an edge of C. Let T".  Tr be the sequence of such subtraces ordered

as they appear in F. Lemma 3.2.4 tells us p = 0(g). Let Oi denote the old vertices

of T,. The following useful lemma shows us that the O, do not interleave too badly

in L.

Lemma 3.5.2. The indexed set system 01,..... 0 has the property (#).

Proof. Suppose for contradiction, that for some i < j there is an x tE Oj and

u,, -- Oi such that u <L X <L r. Think of the sequence F as being along a

horizontal line. so early encounters are to the left and later encounters to the right.

Since u < L X < L ?. the primary occurrences of u. x. and v in F appear in the order

u. x, v. Since r _ 0,. notice T, is a segment of F whose left endpoint is on or to

the right of the primary occurrence of r. Finally. since 1 j. we have that T is

a segment of F whose left endpoint is on or to the right of the light endpoint of

T,. Using the fact that u '- T,. and r - T,. we see that F contains the subseqiince

ii.x.r, u.x" (not necessarily consecutive). But this is impossible because F ca ll,10

contain any subsequence of the form a.b. o. h where a = b. M

Therefore. by Lemma 3.5.1. the induced labeling of 0 U O, determines a

partition of 0 into at most 4p - 3 segments.

Divide the edges of G' into 2 subgraphs. GHi and G,,,w. each on the vertex set

V. For each homotopy class C and each terminal vertex r of C. throw into G_11 all

edges that connect v to old vertices of T c.. Place into G,,, all edges that connect

v to new vertices of T(,,. Figure 3.19, shows what a typical God looks like with its

vertices linearly ordered according to L. The critical vertices have been elevated

above the ordering to make the picture easier to understand. Each critical vertex is

labeled with the associated set of old vertices it covers. (Notice that property (-)

is satisfied.)

The equivalence relation -, yields a well-defined quotient chain graph for (;,,w

having all the desired properties because new vertices of T.. T,, do not interl, ;Ive
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Figure 3.19: A typical G.,, with its vert ices linearlY ordered according to L
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in L.

On the other hand, old vertices of Tl,.... Tp may very well interleave in L. In

order to get a well-defined quotient chain graph for Goid, we must introduce a new

equivalence relation on edges. Say two edges of GoId are equivalent iff they connect

the same pair of intervals and they are incident to the same segment of 0.

Lemmas 3.5.1 and 3.5.2 imply that Gold has only 0(g) equivalence classes. Notice

that now many equivalence classes may join a critical vertex to a single interval.

In order to get a quotient chain graph Hodi that is star-linked, construct H,,[,, from

Gol . as before except this time represent critical vertices by chains with only one

vertex (and potentially high degree.) Now H,. is star-linked, has 0(g) chains and

0(g) edges, and represents which edges of GoI can be placed on the same page with

respect to any permutation of the intervals.

We have decomposed the graph G into the 8 subgraphs G1 . G2.. G .. ;..

G',. G,,ew. and Go,,. and obtained a quotient chain graph for each. Now to finish

the proof. do a simultaneous application of the Chain Graph Lemma to all of t hese

quotient chain graphs.

We have just established our main result:

Theorem 3.5.1. Genus g graphs have pagenumber 0(\ g).

3.6 A Las Vegas Algorithm

As in the edge-case, there is a Las Vegas algorithm to embed a genus g graph in

0(\,/) pages, although here we need the genus g surface embedding as part of the

input. The algorithm works as follows. First take the input graph G and embed

it in a book with 0(g) pages using the Heath-Istrail algorithm. (This is where

we need the initial surface embedding as part of the input.) Let L be the linear

ordering of the vertices so obtained. Partition L into intervals as described in the

last section. and obtain the associated family of quotient chain graphs H,. Pick a
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random permutation r of the intervals and partition the edges of each H, into levels

as in the Chain Graph Lemma. Using the deterministic polynomial-time version of

Lemma 3.3.1. we can embed all the j-level edges of Hi in the optimal number of

pages. Doing this for each H, and all j. gives us a book embedding of G. If this

embedding uses more than O(\ ) pages. then pick another random permutation

of the intervals and repeat. Continue picking random permutations until a book

embedding that uses O(.,-) pages is found. By the proof of the Chain Graph

Lemma. this algorithm runs in expected polynomial time.
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Chapter 4

An Embedding for the Mesh of

Cliques

4.1 Introduction

The n , n Mesh of Cliques. .11(n). is the graph whose vertex set is {1,2.. . ,

{1.2 ..... n} and whose edges connect each row {i} { {1.2 ..... n} into an ,n-vertex

clique and each column { 1.2.. } {i} into an ??-vertex clique. The Mesh of

Cliques was mentioned by Chung. Leighton. and Rosenberg JCLR as a particularly

nice example of a regular graph with unknown pagenumber. They demonstrate

(nonconstructively) that ,11(n) has pagenumber 0(n-). and show that any book

embedding of M(n) which orders the vertices row-by-row along the spine requires

n4 / 3 pages. (No nontrivial lower bound is known for unrestricted vertex orderings.)

We can achieve a tighter (nonconstructive) upper bound by applying Theorem

2.2.1. which gives O(n 3 / 2 ) pages. However. there is something a little unsatisfy-

ing about using a nonconstructive argument on a graph with so much structure.

Certainly, we would prefer an algorithmic way to embed the graph. In addition,

it would also be of interest to know if we could achieve the 0(n3 ") pages with a

row-by-row ordering of the vertices.
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It turns out, there is an explicit procedure for embedding the Mesh of Cliques

in 0(n 3 /
2

) pages with a row-by-row ordering of the vertices. We devote the next.

section to describing this embedding. The method is combinatorially elegant, and

contains ideas that might prove useful in obtaining a deterministic polynomial-time

algorithm to embed an arbitrary graph in something close to O(\iE) pages.

4.2 The Embedding

For technical reasons, we first embed M(n) as a subgraph in M(p2 ). where p is a

prime between n 1,2 and 2n',i 2 . (That such a prime exists follows from Theorem 8.(6

of Niven and Zuckerman [NZI.) This embedding should map each row of 11(n) to

a unique row of AI(p2 ). Since the pagenumber of M(n) is no bigger than that of

M(p"). it suffices to show that 0(p3) pages can accomodate M\(p2 ) with a row-hr-

row ordering of the vertices. Our strategy for doing this is as follows.

(1) Partition each row of M(p2 ) into p supernodes of size p so that only a con-

stant number of edges span any pair of supernodes from different rows.

(2) Linearly order the vertices of Ml(p") simultaneously row by row and supernodc

by supernode.

(3) Use Lemma 2.2.2 to embed all edges spanning vertices of the same row in p'

pages, and all edges spanning vertices of different rows in 0(p-) pages.

To show that step (1) is possible, we need a simple algebraic lemma.

Lemma 4.2.1. Let F be the field consisting of {0, 1. p - 1} under the usual

operations + and • modulo p. For every k 'E {1.2..... pl. the set of polynomials of

degree k - 1 over F (allowing leading coefficients to be 0) has precisely pk elenienis,

and no two of them agree in k or more places.

This lemma is applied as follows.
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Arbitrarily index the rows of M(p 2 ) with the 2-vectors of F 2. Next divide the

nodes of M(p2 ) into vertical bands containing p contiguous columns each. Number

the bands 0...., p - 1 from left to right. Number the columns within each band

0 .... p - I from left to right.

We now establish a 1-1 correspondance between the quadratic polynomials over

F (allowing leading coefficients to be 0) and the supernodes of AI(p 2 ). Each su-

pernode will have exactly one vertex in each band. and all of its vertices in the same

row. We shall say the "ith vertex- of a supernode is that which is in band i. The

correspondance is as follows. If f(x) = ax 2 -4- bir 4- c. then supernode Sf lies in row

(ab). and the ith vertex of Sf belongs to column f(i) rod p in band i.

Notice that when f and g differ by a constant. Sf and S. are disjoint supernodes

in the same row. By the lemma. no pair of supernodes from different rows share

more than two columns. Thus we have a partition of the desired kind. M

We have proven

Proposition 4.2.1. There is a polynomial time procedure to embed the ?I

Miesh of Cliques in O(7 3 '2) pages with a row-by-row ordering of the vertices.

4.3 Comments

There is a similar strategy that can be applied to an arbitrary graph. although il

is largely nonconstructive. We can show that for an arbitrary graph, there exists a

partition of the nodes into VIE/ log E supernodes of roughly equal size, such that

the largest matching spanning any fixed pair of supernodes is of size O(log E).

This observation led us to an initial O(\ EUlog E) uppvr bound on pagenumber for

arbitrary E-edge graphs.

An interesting and natural open question suggested by this approach is the

following. Does there exist a partition of the nodes of an arbitrary E-edge graph

into v supernodes of roughly equal size, such that the largest matching spanning

76



any fixed pair of supernodes is of constant size?
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Chapter 5

Two Lower Bounds for Regular

Graphs

5.1 Introduction

Section 5.2 demonstrates that most d-regular graphs on ? nodes require fQ(\ dn I -!)

pages. which is tight for d -- log n. This substantially inproves the 2(n i  ' log"

lower bound of Chung, Leighton. and Rosenberg CLRI. The crux of the argumenit

is a lemma which shows that most d-regular graphs are nearly *'complete" when

suitably large clusters of vertices are identified. We suspect the lemma may have

application to a variety of other graph embedding problems. In Section 5.J. for

instance, it is used to derive an area lower bound for a multilaver grid model intro-

duced by Aggarwal, Klawe, and Shor [AgKSI.
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5.2 Pagenumber Lower Bound for the Class of

c-regular Graphs

",ay that a graph is (a.p)-dense if for every partition of the nodes into p equal

supernodes. there are at least c(P) distinct supernode pairs that are spanned bv

an edge.

Lemma 5.2.1. Most n-vertex d-regular graphs are (Q(p-2" ).p)-dense for ) --

O(v'dn).

Proof. For convenience we shall let E = dn 2.

To start, we want to get a good estimate on the number of vertex-labeled d-

regular i-node graphs. The number of such gr,-r" is certainly larger than the

nunmber of d-regular bipartite graphs whose LEFT nodes are labeled {0. 1... . . :

1 }. whose RIGHT nodes are labeled {n 2. n 2 - L. n - 1}. and which satisfv tlhe

property that LEFT vertices

{1 -j(n, 2d).2 -- j(ni2d) .... (j 1)(n 2d)}

cover all RIGHT vertices, for every j {0. d - 1}. The number of these graphs

is precisely

d~d (!)1(-[ (n/d)] = E)(n/d) IE .

(d, . d) (!

Next we want to estimate the number of partitions of n labeled nodes into p

equal labeled supernodes. This is less than the number of partitions into p labled

supernodes without regard to size. which is precisely p".

Given n labled vertices and a partition of the vertices into p equal supernodes.

the number of d-regular graphs that have edges spanning at most a(!,) distinct

supernode pairs. is certainly less than the number of E-edge graphs satisfying the
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same property. The number of such E-edge graphs is bounded above by

Pa) (n/p) -(a n) [(n/ 2 )E( ) ( 2~P 1 < 9a2) 9o~ E.

Hence the number of vertex-labled n-node d-regular graphs whose edges span

at most a(P) distinct supernode pairs for some partition of the nodes into p equal

labeled supernodes, is less than pn [O(an/d)]E.

We seek the largest a for which this quantity smaller than the total number of

d-regular graphs. That is, we want the maximum a subject to pnlO(an 1d)1E

[E(nid)IE. Simplifying, we have praE < [0 (1)]E. Hence the largest such o is

Now we use this lemma to prove

Theorem 5.2.1. Mlost u-vertex d-regular graphs require require 12(\ dill

pages.

Proof. By Lemma .5.2.1. most d-regular i7-node graphs G are (Q(? ? ), \ dii)-

dense. Here we are using the fact that (dn)- '' = (n- '). Fix a linear orderingI

of G's vertices and partition the ordering into \ dn intervals of size n % d??. Obtaini

a linearly ordered quotient graph Q(G) by collapsing, in place, each interval to a

single vertex and identifying multiple edges. Q(G) has f2(n7?/(dn)) edges since C is

(Q (n-l/), vdn)-dense. In any book embedding of Q(G). less than 2% di edges can

appear on the same page (an outerpianar graph on t nodes has less than 2t edges.)

Thus 11(n-'/i v ) pages will be required to embed Q(G), and hence rQ(n-'/ -dn)

pages will be required to embed G. U

5.3 An Area Lower Bound for Multilayer VLSI

We suspect that Lemma 5.2.1 or results like it will have application to a variety

of graph embedding problems. This section furnishes one such application. Here
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we derive an area lower bound for a multilaver VLSI grid model introduced bY

Aggarwal, Kiawe. and Shor AgKSL. Following jAgKS1. the k-PCB (PCB stands

for printed circuit board) model consists of k grid layers. Each node of the eilbedded

graph is placed in the same position on each layer, and edges are embedded as pat is

in the grid which may change layers at contact cuts. An edge path may begin and

end on any layer, but within each layer, paths cannot intersect except at endpoints.

jAgKS1 develops several algorithms all of which focus on the case where contact cuts

are not allowed. This is a very desirable property since cuts may require expensive

fabrication techniques and more area. and tend to make a chip less reliable.

The thickness of a graph G is the minimum number of planar subgraphs into

which it can be decomposed (the planar subgraphs are allowed to share vertices btt

not edges.) (Cearly. a graph can be embedded in the k-PCB model without cor a I

cuts iff ,i has thickness at most k.

Many of the results in AgK ' deal with a variant of the k-PC(3 model in which

each node of the embedded graph must he placed in a specified location. TlhiR

O i, refrred to a, the fixed placement model. This model arises natii rally in Ilie

design of printed circuit boards where often tHI placement of the nodes rust reape,( I

certain constraints.

Proceeding more formally, a placement is a one-to-one mapping of the nodes of

a graph ( into a set of disjoint horizuntal segmen.ts of a rectangular grid R. \\e sa't

that an embedding of C in R respects a placement a if the nodes are etmibedded

according to cr. A universal placement is a set N of n horizontal segments in a

rectangular grid R with the property that for some class C of n-node graphs, if (

is any graph in ( and a is any placement of the nodes of G onto N. then there is

an embledding of G in ? w\hi( It respect r. t ay t hat an mnbedd g algorit in for

a cas of' graptis respects fixed placenients :f there is a universal placerneit for

that class. , ich that for any graph G in th class and an placement CT onto thc

Iuiiv tsal pla(enI I en t . tle eInb cdin a(Torii ln ives all embedding of ; \I)( h
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respects (T.

Combining the results of AgKSJ with the lower bound in IAKLLW. and Ihe

algorithm in KSI. demonstrates that for k = 1 or 2. the area required by optimal A--

PCB embedding algorithms (using no contact cuts) for n-node graphs of thickness A-

is 9(n 3 ) if the algorithms respect fixed placements. and only O(n ) area otherwise.

In particular. the following result of [AgKS1 is a simple consequence of the fact

that bounded-degree expander graphs have quadratic crossing number (see Lt i).

Theorem. There are n-node graphs of degree at most 3 (and therefore tliickness

at, most 2) such that for any fixed k. every k-PCB embedding requires fl( 7) area.

regardless of the number of contact cuts.

In the other direction. fAgKS establishes the following

Theoreln. There is an O(n 3 ) area k-PCB embedding algorithm For n-node gra pli,

of thickness at most A,. which uses no contact cuts andr respects fixed pI acen t-.

These results suggest a natural open question posed by Aggarwal. Kla,. aid

Shor: close the gap between the fZ ) lower bound and O(n 3 ) upper bound krlic

area required to embed a graph of thickness k in k layers (without contact c'lt,)

when " • 3.

Although we cannot say anything new with regard to arbitrary placements. %\V

can say something interesting if we assume the nodes of (, are mapped to a single

horizontal line in the grid. We call such a mapping a linear placement.

To prove the next proposition, we need the notion of crossing number of a

graph. The crossing number of a graph G (denoted i'AG) is the minimum number

of edge-crossings achieved by some embedding of G in the plane.

Proposition 5.3.1. For d _ 6. there is a d-regular gra.h (therefore thlickwns'

at most d 2) on n nodes that requires M1(n" " \ d) area for any (d 2)-I'Cl I

embedding that uses no contact cuts and respects linear placement.
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Proof. By Lemma 5.2.1. most d-regular "i-node graphs are (fl(n-"~), v d-)-dense.

It is easy to show that most d-regular graphs have bisection width Q(dn). Hence

there is some d-regular graph G that satisfies both properties.

Suppose we have some d/2-PCB embedding. o. that places the nodes of G along

a horizontal line L and uses no contact cuts. Since the bisection width of G is

fl(dn), the height, of the layout is Q(dn). To show that the width of the layout is

large. we must prove that edges in some layer cross the line L many times.

Partition L into \dn segments, each containing\ n d nodes of G. Collapse the

nodes of each segment to a single point and identify multiple edges. This yields a

quotient graph Q(G) with f(dn? '' ) edges by Lemma 5.2.1. Hence there must he

a subgraph I of G consisting of 11(01- 1 ' ) edges. no two of which gel identified in

Q(G). and all residing on the same layer, sax layer 1.

.\ theorem due to !Leighton Lt2I says that any graph with E edges on t node'-.

where E It. has crossing number Q1(E" f-. Applying this to Q(1t). shows that

its crossing number is Ql(n.-, j d).

Let P he the collection of paths along L which connect consecutive nodes of each

segment. (Thus P is the union of N dn disjoint paths of length \ d.) Take 11' to

he the union of II and P. Since the maxinmln degree of any node in Q(11) is at

most \ d-. it is not difficult to see that ' H' _ uQ(H)! d fl(\ d? = M n "' d.1 2).

Now think of H' embedded in layer 1. so that the edges of H are mapped according

to o. and edges of P are straight-line segments along L. Since the edges of 11 do

not cross each other, all crossings in H' must result from edges in H crossing edges

in P. Hence the line L is crossed ,l~n3 "2 - '>' d3' 2) times by the edges of H. which

means the width of the layout is Q(n 3 .'" ' 
' d3 2. *

Another interesting variant of the question posed by Aggarwal. ,lawe. and

Shor. assumes that each edge is assigned a specified layer beforehand (insisting I 1al

the edges assigned to any given layer induce a planar graph.) Even in this more

restricted version of the question, we are not able to say anything new regar,.;iig,



arbitrary placements. We have no results for linear placements that supercede

Proposition 5.3.1.
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Chapter 6

Conclusion and Open Questions

6.1 Summary of the Results

We have shown that the class of E-edge graphs has pagenumber (\ El. and thai

the class of genus ! graphs has pagenumber O(\ q). Both results are tight and

substantially improve previously known bounds. In addition. we provided La \,,ag-

algorithms to generate book embeddings that satisfy these tpper hounds. (The L.a

Vegas algorithm that embeds a genus g graph in O(\ g) pages required that the

initial genus g surface embedding be provided as pait of the input.) All of these

results could have application to some interesting problems in VLSI design.

In the other direction. we demonstrated that most d-regular graphs on n nodes

require f?('dn1 2 - 1 I ) pages. which is tight for d - logn. This is also a marked

improvement over previous results.

We established an area lower bound for networks embedded in multilayer grids.

We proved there are n-node graphs of thickness/,"_ 3 that require Q(n 2 5s' - 2k \ T)

area in'the k-PCB model of [AgKS! when the vertices are linearly arranged. This

narrows the gap between the previous bounds of fl(n") and 0(113) area.

Finally. we described a constructive O(n3  )-page embedding for the n , I Nesh

of Cliques graph that orders the vertices row-by-row along the spine. This nearly



meets the n4 /3 lower bound for such an ordering established in [CLRI.

6.2 Open Problems

The following is a list of open problems that concern book embeddings and related

issues addressed in this thesis.

1. Is there a deterministic polynomial-time algorithm to embed an E-edge graph

in O(\ E) pages? Is there a polynomia! time algorithm to embed a d-regular

bipartite graph in O(\'.dn) pages. where all left vertices precede all right ver-

tices? (Such an algorithm is known for d = 2. but not for any larger d.)

2. is the pagenumber of nonorientable genus g graphs O(\ )? (See Section 3.2

for the definition of nonorientable genus.)

3. Section 2.8 gives a deterministic polynomial-time algorithm to embed an ar-

bitrar n-node graph in log?7 times optimal pages with respect to a stpecified

ord(ering of the vertices. Is there a deterministic polynornial-time constant- 0

factor approximation algorithm for this problem? A graph G is a circle graph

if there is a 1-1 correspondance between the nodes of G and chords of a circle

such thlat two nodes of G are adjacent iff the corresponding chords intersect.

Section 2.3 shows that the chromatic number of an n-node circle graph is at

most log n times the size of the largest clique. Is it the case that the chromatic

number is at most a constant times the size of the largest clique? What can

we say about the chromatic number if there are no triangles?

-1. Given a graph G and a drawing o of G in the plane, let I(G.o) be the

associated intersection graph. defined as follows. Each node of I(G.o)

corresponds to an edge of G, and each edge (el e2 of I(G,o) indicates that

the edges e; and e, of G cross in the drawing o. Define a' (,) to be the

. ,, i i i I l6



minimum over all o, of the size of the largest clique that appears in I(G.o).

Is w (G) equal to the thickness of G, 9(G)? Does equality hold if O(G) = 3?

5. What is the pagenumber of the n x n Mesh of Cliques? What is the pagenum-

ber of the n Y k Mesh of Cliques when we restrict ourselves to a row-by-row

ordering of the vertices along the spine? A sharp answer to the latter ques-

tion for all k would be a nice generalization of Lemma 2.4 and Theorem 2.3

in ICLRJ.

6. Does there exist a partition of the nodes of an arbitrary E-edge graph into

'E supernodes of roughly equal size. such that the largest matching spanning

any fixed pair of supernodes is of constant size?

7. What is the pagenumber of the Mesh of Trees? DeBruijp ,Graph? "ii -

Exchange Graph? An Expander Graph? Since these -rc all trivalenw graph,.

the algorithm of Theorem 4.10 in CLRW can embed them all O(\ 77) pages.

8. Is the lower bound of Theorem 5.2.1 tight for the class of d-regular graphs

when d - log n? We suspect not.

9. Give an explicit construction of d-regular graphs on n7 nodes that require

Ql(\ dn ' 2-1 ') pages.

10. What 'is the worst-case area required by a thickness k graph in the k-P('3

model, with and without prespecified layer assignments for the edges? What

if we assume the vertices are linearly ordered?

11. Does every n-node 3-page graph have o(n) bisection width? Such a result

would have important implications in complexity theory since Turing ma-

chine computation graphs are embeddable in three pages. (A paper by Galil.

Kannan. and Szemeredi IGKSI suggests that the answer may be "no-).
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12. Fix a graph G. and let B be a book embedding of G. The pagewidth of

a page in B is the maximum number of edges on the page that cross any

line perpendicular to the spine. Define the width of B to be the maximum

pagewidth of any page in B. Chung, Leighton. and Rosenberg ask the fol-

lowing questions: (1) Is there a fixed number p such that all n-node 1-page

graphs can be realized in p pages of width proportional to logn? (2) Is there

a fixed number q such that all n-node 2-page graphs can be realized witi q

stacks of width proportional to \ n?

Heath iHe2! answered the first question affirmatively, but the second quest ion

remains open.
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